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Abstract

In this paper, we embark on a new strategy for computing the steady state solution of the diffusion equation. The new
strategy is to solve an equivalent first-order hyperbolic system instead of the second-order diffusion equation, introducing
solution gradients as additional unknowns. We show that schemes developed for the first-order system allow O(h) time step

instead of O(h2) and converge very rapidly toward the steady state. Moreover, this extremely fast convergence comes with
the solution gradients (viscous stresses/heat fluxes for the Navier–Stokes equations) simultaneously computed with the

same order of accuracy as the main variable. The proposed schemes are formulated as residual-distribution schemes
(but can also be identified as finite-volume schemes), directly on unstructured grids. We present numerical results to dem-
onstrate the tremendous gains offered by the new diffusion schemes, driving the rise of explicit schemes in the steady state
computation for diffusion problems.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we embark on a new strategy for computing the steady state solution to the diffusion
equation,
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ut ¼ mðuxx þ uyyÞ; ð1:1Þ

where m is a positive diffusion coefficient. The new strategy is based on the following first-order system:
991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

1016/j.jcp.2007.07.029

sent address: National Institute of Aerospace, 100 Exploration Way, Hampton, VA 23666-6147, USA. Tel.: +1 757 325 6906.
ail address: hiro@nianet.org

mailto:hiro@nianet.org


316 H. Nishikawa / Journal of Computational Physics 227 (2007) 315–352
ut ¼ mðpx þ qyÞ;
pt ¼ ðux � pÞ=T r;

qt ¼ ðuy � qÞ=T r;

ð1:2Þ
where Tr may be called a relaxation time. This is in fact a relaxation system, often called the hyperbolic heat
equations, asymptotically equivalent to the original diffusion equation as Tr! 0 [1–3]. There have been many
attempts to develop numerical methods for such relaxation systems [1,4–6], with a particular focus on the stiff-
ness problem: an explicit time step, Dt = O(Tr)! 0, is prohibitively restricted due to an extremely small relax-
ation time; an implicit treatment of the stiff source term could degrade the solution accuracy [7]. Although
based on the same equations, the new strategy is radically different from these relaxation methods. The key
is to realize the fact that the first-order system is equivalent to the diffusion equation at the steady state
(ut = pt = qt = 0) for any Tr:
0 ¼ mðpx þ qyÞ;
0 ¼ ðux � pÞ=T r;

0 ¼ ðuy � qÞ=T r;

8><
>: !

0 ¼ mðpx þ qyÞ;
p ¼ ux;

q ¼ uy ;

8><
>: ! 0 ¼ mðuxx þ uyyÞ: ð1:3Þ
Then, as far as the steady state computation is concerned, the relaxation time Tr is a free parameter, and the
stiffness is no longer an issue. In short, we gain the freedom to choose Tr to avoid the stiffness by giving up the
time accuracy. This is the key idea of the new strategy. And we will see in due course that this simple idea
paves the way for the rise of explicit schemes in the steady state computation for diffusion problems, and also
brings a dramatic change in the way an advection scheme and a diffusion scheme are combined for advection-
diffusion problems.

In developing numerical schemes for the first-order diffusion system (1.2), we focus on the residual-distri-
bution (or fluctuation-splitting) method. This is partly because the present study was originally motivated by
the need to develop diffusion schemes in the framework of the residual-distribution method, and also because
this method has superior features especially for unstructured grids. This is a method based on nodal degrees of
freedom and cell-residuals in the same spirit of the cell-vertex schemes [8], but its development has been almost
exclusively for triangular unstructured grids. It has been developed extensively for problems dominated by
advection and wave propagation because of the ability to reflect multidimensional physics of the governing
equations [9–14]. But on the other hand, its application to diffusion problems had long been almost
untouched, apparently because diffusion is an isotropic process and does not benefit particularly from such
a multidimensional capability. In fact, it has been a standard practice to discretize the viscous term by the
Galerkin method and simply add to the existing residual-distribution Euler code to construct a Navier–Stokes
code [15–17]. It was pointed out in [18] however that such a strategy deteriorated the formal accuracy of the
scheme due to an incompatibility of the two discretizations, especially in regions where advection and diffusion
effects are equally important. Then, in [18], a first-order system approach was introduced as a basis for devel-
oping uniformly accurate schemes for the advection-diffusion problems. But without the time derivatives and
the relaxation time, it only discusses the spatial discretization and no details on the method to compute the
steady state solution is given. In this paper, we introduce the time derivatives and the relaxation time to write
the first-order system as a set of evolution equations as in (1.2), and develop a class of residual-distribution
schemes for computing the steady state solution. In so doing, we take full advantage of having an arbitrary
relaxation time. We will show in particular that we can develop a class of schemes that allow an O(h) time
step, where h is a mesh size, instead of the conventional O(h2) time step. This is a tremendous gain, and shows
a great potential for promoting the use of explicit methods for steady state computations in diffusion problems
for which O(h2) time step has always been the major obstacle for using explicit methods (even for steady cal-
culations) and the motivation for resorting to other methods such as implicit methods. Moreover, this rapid
convergence comes with solution gradients computed with the equal order of accuracy as the solution u. This
not only eliminates the need of post-processing to compute the physical quantity of interest such as viscous
stresses or heat fluxes, but also provides such quantities with excellent accuracy whereas the post-processed
quantities often lose the order of accuracy by at least one. We also pay a particular attention to the relation
with the Galerkin discretization. The Galerkin discretization does not precisely fit in the framework of resid-
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ual-distribution (although can be arranged as if it is), but rather surprisingly it is shown to emerge as a special
case of the proposed schemes. Although this paper is largely concerned with the residual-distribution method,
finite-difference or finite-volume schemes can also be developed based on the same first-order system. We
believe that it can be done straightforwardly and the description of the one-dimensional residual-distribution
schemes in this paper will provide a guide for developing these schemes.

The first-order system, although in a slightly different form, has often been utilized for developing diffusion
schemes in finite-element methods: the mixed finite-element method [19] or the least-squares finite-element
method [20]. But the focus there is rather on accuracy, and the method to obtain the steady state solution
is not paid a particular attention, which makes it hard to compare the present approach with. Also, in the
discontinuous Galerkin method, the first-order system is utilized for a proper discretization of diffusion terms
[21]. The same approach was taken also in the spectral finite-volume method [22]. In these methods, because of
the discontinuous nature of the numerical solution, the gradient variables are explicitly solved locally and
eliminated by direct substitution back into the diffusion term. Therefore, the first-order system disappears
at the end of the discretization. In the case of the residual-distribution method, this is not possible because
the solution data is continuous, and therefore we end up with a globally coupled system of equations. In effect,
we will be solving this global system iteratively by marching in time until convergence. This however should
not be taken as a disadvantage because this is how the residual-distribution schemes achieve second-order
accuracy at the steady state without reconstruction. Also this makes it possible to achieve a rapid convergence
to the steady state with O(h) time step in the first-order system approach with the gradient variables directly
available on boundary nodes where such information is particularly valuable (e.g., skin friction/heating rate).

We set out in Section 2 the residual-distribution method in relation to diffusion problems. Describing the
difficulties with the diffusion equation, we finally arrive at the first-order system approach. We then begin to
develop a class of residual-distribution schemes for the first-order system. In Section 3, we describe the devel-
opment and the analysis of the new schemes in one-dimension. It is then extended to two dimensions in Sec-
tion 4. In Section 5, we show that the first-order system approach can be used to derive dissipation terms for
scalar diffusion schemes. In Section 6, we present numerical results to demonstrate the accuracy and the con-
vergence properties of the new schemes for both one-dimensional and two-dimensional problems.

2. Residual-distribution method and diffusion equation

2.1. Residual-distribution method in one-dimension

We call methods residual-distribution if they can be factored into the two steps, residual evaluation and dis-

tribution. Consider computing the steady state solution of the one-dimensional conservation law,
ut þ fx ¼ q: ð2:1Þ

To discretize, we generate a set of nodes {J} with coordinates xj distributed arbitrarily over the domain of
interest, and store the solution at each node (uj,pj), j 2 {J} assuming the piecewise linear variation over each
cell (see Fig. 1). This defines a set of cells {C} of size DxC = xj+1 � xj. Then, for each cell, we evaluate the cell-
residual (or fluctuation) /C as an integral value of the steady part of the equation,
Fig. 1. Continuous piecewise linear data representation.
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/C ¼ �
Z

C
ðfx � qÞdx ¼ �ðfjþ1 � fjÞ þ

qjþ1 þ qj

2
ðxjþ1 � xjÞ; ð2:2Þ
where the source term has been evaluated by the trapezoidal rule. Note that the source term approximation
has been deliberately chosen to be exact for linear q, in order to be compatible with the accuracy of the other
term. This defines a measure of the error in satisfying the steady equation over the cell. If this does not vanish,
we must change the nodal solutions to reduce the error. This brings the second step, i.e., distribution. We
determine fractions of /C to be distributed to the nodes on the left and the right, /C

j and /C
jþ1 by
/C
j ¼ bC

j /C; /C
jþ1 ¼ bC

jþ1/
C; ð2:3Þ
where bC
j and bC

jþ1 are distribution coefficients that satisfy
bC
j þ bC

jþ1 ¼ 1 ð2:4Þ
for conservation. Having done this for all cells, we have the following semi-discrete equation, with L and R
indicating the left and right cells of node j (see Fig. 2),
duj

dt
¼ 1

hj
/L

j þ /R
j

h i
¼ 1

hj
bL

j /L þ bR
j /R

h i
; ð2:5Þ
where hj = (xj+1 � xj�1)/2, which we integrate until we reach the steady state. The key to construct a successful
scheme is, of course, the choice of the distribution coefficient bC

j . This is where the physics of the equation
plays an important role. For example, for hyperbolic equations, an upwind scheme is constructed by the fol-
lowing distribution coefficients:
bC
j ¼

1

2
1� aC

jaCj

� �
; bC

jþ1 ¼
1

2
1þ aC

jaCj

� �
; ð2:6Þ
where aC = (of/ou)C which may be evaluated using the Roe linearization, fj+1 � fj = aC(uj+1 � uj) [23]. In fact,
with these coefficients, Eq. (2.5) can be written as
duj

dt
¼ � 1

hj
F jþ1

2
� F j�1

2

h i
þ q̂j; ð2:7Þ
where
F jþ1
2
¼ 1

2
ðfjþ1 þ fjÞ þ

jaCj
2
ðujþ1 � ujÞ ð2:8Þ

q̂j ¼
1

hj
bL

j

qj þ qj�1

2
DxL þ bR

j

qjþ1 þ qj

2
DxR

� �
: ð2:9Þ
This can be interpreted as a finite-volume scheme with a rather complicated source term discretization which
would be simply q̂j ¼ qj in the finite-volume method. Hence, the residual distribution scheme and the finite-
volume scheme are identical except for the source term discretization. Note that the scheme is second-order
accurate at a steady state. This is true for any bounded distribution coefficients on general non-uniform grids.
This is because the nodal residual is a weighted average of cell-residuals that vanish individually for exact lin-
ear solutions of the conservation law. This property is called residual property and one of the reasons for the
superior accuracy of the residual-distribution schemes on irregular grids. This is particularly advantageous
Fig. 2. Distribution of cell-residuals and the dual control volume.
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over the finite-difference and the finite-volume schemes for advection-diffusion problems where nonuniform
grids are desirable to efficiently resolve narrow transition regions such as boundary layers.

If implemented as a finite-volume scheme with q̂j ¼ qj, the scheme will be only first-order accurate at a
steady state due to the lack of the residual property. To recover the second-order accuracy, the source term
must be discretized in such a way that the steady equation
fx ¼ q ð2:10Þ

is satisfied with second-order accuracy at a steady state. This can be done by using the residual distribution
formulation which gives a proper discretization such as (2.9), or by using other techniques specific to the fi-
nite-volume method (see [24] and references therein). In particular, a method in [25] is capable of producing
a finite-volume scheme in the form (2.8) with (2.9).

2.2. Residual-distribution method in two dimensions

Now, in two dimensions, consider again solving the conservation law,
ut þ fx þ gy ¼ q: ð2:11Þ
We begin by dividing the domain of interest into a set of triangles {T}, with a set of nodes {J}, and store the
solution values at nodes. We then proceed as in one-dimension, first to evaluate the cell-residual. For each
triangular cell T 2 {T} with vertices {iT} = {1,2,3}, we evaluate a local cell-residual, /T,
/T ¼ �
ZZ

T
ðfx þ gy � qÞdxdy; ð2:12Þ
which becomes, for a piecewise linear approximation of f, g, and q,
/T ¼ �ðf T
x þ gT

y ÞST þ
q1 þ q2 þ q3

3
ST ¼ �

X
i2fiT g

1

2
ðfi; giÞ � ni þ

q1 þ q2 þ q3

3
ST ; ð2:13Þ
where f T
x and gT

y denote constant derivatives over the triangle, ST is the area of the triangle, {iT} denotes a set
of nodes that form the triangle, and ni is the scaled inward normal vector of the edge opposite to node i (see
Fig. 4). Note that the source term approximation has been deliberately chosen, as in one-dimension, to be
compatible with the accuracy of the other term. We now move on to distribute the cell-residual to the nodes.
We determine a fraction /T

i of /T to be distributed to node i of triangle T by
/T
i ¼ bT

i /T i 2 fiTg; ð2:14Þ

(see Fig. 3) where bT

j is a distribution coefficient with the property
Fig. 3. Distribution of a non-zero cell-residual to the set of vertices {iT} = {1,2,3}.



Fig. 4. Median dual cell around node j in the set of triangles sharing that node {Tj}.
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X
i2fiT g

bT
i ¼ 1 ð2:15Þ
for conservation. Again, it is the distribution coefficient that reflects the physics of the governing equations.
There has been extensive research work on the distribution coefficients almost exclusively for hyperbolic prob-
lems, and today various upwind schemes are available (see [9,26] for example). Note that the upwind scheme in
two dimensions is not unique even for a linear problem, and that residual-distribution schemes cannot always
be rephrased as a finite-volume scheme. This means that the residual-distribution schemes are fundamentally
different from the finite-volume schemes, and the connection between the two methods begins to blur in higher
dimensions.

It is important to note that the cell-residual (2.13) vanishes for exact linear solutions, nothing will be dis-
tributed then, and the solution is preserved as a result. So, we have the residual property, and it is independent
of the shape of the cell. This is a great advantage especially for unstructured grids. And as in one dimension,
the scheme is therefore second-order accurate at the steady state for bounded distribution coefficients [11].
Note that this is no longer true if we evaluate the source term separately by a point value as is done in the
finite-volume schemes, and the scheme will then be only first-order accurate. In this study, we do not consider
this option.

Finally, accumulating the partial residuals distributed at node j, we arrive at the following semi-discrete
form:
duj

dt
¼ 1

Sj

X
T2fT jg

/T
j ; ð2:16Þ
where Sj is the median dual cell area around node j, and {Tj} denotes a set of triangles sharing the node (see
Fig. 4). We then integrate this in time to reach the steady state.

2.3. Galerkin discretization of diffusion equation

In applying the residual-distribution method to the diffusion equation which involves second-order deriv-
atives, we immediately notice that a cell-residual cannot be defined over a cell because it vanishes identically
for piecewise linear solutions. One way to overcome this difficulty is to discretize the diffusion term directly at
a node by the Galerkin method, and then write the result as a sum of the contributions from the nearby cells as
if it is residual-distribution. Consider the one-dimensional diffusion equation,
ut ¼ muxx: ð2:17Þ

We assume a uniform grid h = xj+1 � xj, and apply the Galerkin method: multiply the equation by the piece-
wise linear basis function that takes 1 at node j, and 0 at nodes j � 1 , and j + 1, and then integrate by parts
from x = xj�1 to x = xj+1. Then, lumping the left hand side, we obtain the following semi-discrete equation:
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h
duj

dt
¼ m

h
ðujþ1 � 2uj þ uj�1Þ; ð2:18Þ
which can be written as
duj

dt
¼ 1

h
½/R

j þ /L
j � ¼

1

h
mðujþ1 � ujÞ

h
� mðuj � uj�1Þ

h

� �
; ð2:19Þ
so that we find that the contributions to the nodes within cell C are defined as
/C
j ¼

mðujþ1 � ujÞ
h

; /C
jþ1 ¼ �

mðujþ1 � ujÞ
h

: ð2:20Þ
In this form, the scheme can be implemented in the residual-distribution framework. However, it is clear that
the contributions within a cell sum up to zero: /C ¼ /C

j þ /C
jþ1 ¼ 0. Hence the cell-residual does not exist, and

in this sense the Galerkin scheme is not residual-distribution.
Similarly, the two-dimensional diffusion equation (1.1) can be easily discretized by the Galerkin method. Or

equivalently, we can directly integrate the diffusion term over a set of triangles {Tj}: first convert the integral to
the line integral around {Tj} by the divergence theorem, and then evaluate it with the constant gradient over
each triangular cell. In either way, we arrive at the following discretization:
Sj
duj

dt
¼ � m

2

X
T2fT jg

ruT � nT
j ; ð2:21Þ
where nT
j is the scaled inward normal vector of the edge opposite to node j of triangle T (see Fig. 4). Then, we

find from this that the contribution to node i within cell T is defined as
/T
i ¼ �

m
2
ruT � nT

j ; ð2:22Þ
which however again sums up to zero over the cell because nT
1 þ nT

2 þ nT
3 ¼ 0, and therefore no cell-residual

exists. This might seem a natural consequence because the diffusion term identically vanishes over the cell
for piecewise linear solutions, but in fact, it has been shown that this is true for any basis functions [27].
Cell-residuals are necessary for a scheme to be residual-distribution and even vital for the advection-diffusion
schemes in which cell-residuals for the entire equation are sought. It seems hopeless to have cell-residuals for
the Galerkin scheme, but we will discover later that cell-residuals for the Galerkin scheme do exist; they
emerge, rather surprisingly and paradoxically in a way, out of the residual-distribution schemes that we pro-
pose in this paper.

2.4. Residual-distribution for diffusion equation

It is possible to evaluate a cell-residual for the diffusion term if the solution gradient is available at nodes. In
one-dimension, we may reconstruct the gradient at node j, (ux)j, by a simple finite-difference approximation,
ðuxÞj ¼
ujþ1 � uj�1

2h
; ð2:23Þ
and evaluate the cell-residual as
/C ¼
Z

C
muxx dx ¼ m½ðuxÞjþ1 � ðuxÞj�: ð2:24Þ
This does not vanish identically and therefore can drive the change of the nodal solutions. Similarly in two
dimensions, we can reconstruct the gradients at nodes, and then evaluate cell-residuals for the diffusion term.
This type of scheme was studied in [12,27,28] and also in [13] for quadrilateral grids. To distribute the cell-
residual, in [13,18,27], equal weights are proposed to reflect the isotropic nature of diffusion, and in [12,28]
where the advection-diffusion problems are considered, upwind coefficients are used for the entire cell-residual.

The resulting scheme is genuinely residual-distribution: it has the residual property and can be naturally
combined with an advection scheme for the advection-diffusion problems. But the scheme is no longer
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compact because the stencil has been extended by way of reconstruction. For example, in order for the scheme
to be second-order accurate, the cell-residual must be evaluated with second-order accuracy. This requires at
least a quadratic reconstruction, thus demanding a very large stencil especially in two dimensions. Even worse,
it is pointed out in [13] that these schemes (with bounded distribution coefficients) always suffer from a lack of
dissipation for high-frequency error modes for both triangular and quadrilateral grids. Certainly, these
schemes need some form of dissipation, but deriving a dissipation term for the scalar diffusion scheme turns
out to be a nontrivial task. But we will discover a form of dissipation from the new diffusion schemes we
develop in this paper. We will discuss this in more details in Section 5.

2.5. First-order system approach

We now propose a new strategy: we carry the gradient p as unknown and solve the first-order system
instead,
ut ¼ mpx;

pt ¼ ðux � pÞ=T r; ð2:25Þ
where Tr is a free parameter. This is then equivalent to the diffusion equation, ut = muxx, at the steady state
where exactly we seek the solution. With the first-order system, since there appear only first-order derivatives,
the cell-residuals can be evaluated straightforwardly with second-order accuracy without reconstruction as we
store all variables (u,p) at nodes. In short, we can now develop compact schemes. And this is true not only for
the residual-distribution schemes but also for finite-difference or finite-volume schemes, simply because we no
longer need to discretize the second-order derivative which generally requires an extended stencil. This is one
of the advantages of solving the first-order system instead of the second-order diffusion equation. In fact, in
general, there are a number of advantages for solving first-order systems in place of equations with higher
derivatives: compact stencils, stiffness made local, ease of functional decomposition, and so on. An extensive
discussion on the use of first-order systems in computational fluid dynamics is given by Van Leer [29]. Here,
we focus on the aspects particular to the first-order diffusion system.

The first-order system (2.25) is identical to the hyperbolic heat equations: asymptotically equivalent to the
original diffusion equation as Tr = O(m)! 0; correctly modelling the short time behavior of heat flows (a solu-
tion to the paradox of the infinite heat propagation) [1–3]. Difficulties in solving this system lies in the stiff
source term, �p/Tr, on the right hand side of the second equation. Because Tr is typically an extremely small
quantity, an explicit time step, Dt = O(Tr)! 0, is prohibitively restrictive. But an implicit treatment of the stiff
source term could degrade the solution accuracy unless it is strongly coupled with the flux computation
[7,30,31]. The same difficulties are shared with other physical models of interest, such as rarefied gas dynamics
or radiation hydrodynamics. Hence, numerical methods for solving these relaxation systems have been exten-
sively studied [1,4–6], with a particular focus on the same stiffness problems. But the stiffness is not an issue in
our case because the system is equivalent to the diffusion equation for any Tr at the steady state, and the steady
state solution is exactly what we are interested in. This makes the development of numerical schemes a lot eas-
ier than the relaxation methods.

It is interesting to note that the removal of the stiffness comes at the expense of correct transient behavior.
This is similar to the local preconditioning technique [32–35]. In this technique, by altering the transient prop-
erty of the time-dependent system (losing time accuracy), one attempts to optimize the condition number (the
ratio of the maximum to the minimum wave speeds) in order to maximize the effect of error propagation
thereby accelerating the convergence toward the steady state. The stiffness here is caused by a large condition
number, and this is made to close to 1 as much as possible by multiplying the spatial part of the time-depen-
dent system by a preconditioning matrix. In fact, the first-order system (2.25) can be interpreted as a precon-
ditioned system of the hyperbolic heat equations. Suppose we have the hyperbolic heat equations with the
relaxation time �� 1,
u

p

� �
t

¼
0 m

1=� 0

� �
u

p

� �
x

�
0

p=�

� �
: ð2:26Þ



H. Nishikawa / Journal of Computational Physics 227 (2007) 315–352 323
This is a physically correct time-dependent system. Now, it is easy to see that multiplying the right hand side
by the following preconditioning matrix:
1 0

0 �=T r

� �
; ð2:27Þ
where Tr is a free parameter, we obtain the first-order system (2.25). In effect, the preconditioning matrix re-
places the relaxation time � by a free parameter Tr. The system no longer describes a physically correct evo-
lution of heat flows, but it is not stiff any more and still yields a correct solution at the steady state. Although
the meaning of stiffness is slightly different, in both cases, the key idea is that we remove ‘stiffness’ by discard-
ing correct time-dependent behavior.

It is important to note that although analytically the steady state solution does not depend on m, the tran-
sient solution depends on it. But numerically, the dependency on m can be eliminated by a suitable definition of
the time step. In fact, for scalar schemes directly solving the diffusion equation, such as the Galerkin scheme
and the distribution scheme based on the gradient reconstruction, a time integration with time step Dt � 1/m
will cancel the effect of m, and the convergence toward the steady state will be independent of m. Or simply but
equivalently, it is always possible in the diffusion equation to eliminate m by a suitable time scaling. This is a
natural and desirable property for steady state computations. In the case of the first-order system, the same
can be true if the entire right hand side is proportional to m. This is possible by setting Tr � 1/m, and therefore
we set
T r ¼
L2

r

m
; ð2:28Þ
where the length scale Lr has been introduced for the sake of dimensional consistency. Then, in view of the
relaxation approach [1], the solution to the first-order system tends to stay in the frozen limit, i.e., obey the
hyperbolic system rather than the diffusion equation for small m. For large m, the relaxation time Tr becomes
small, but in this case the solution should reach the steady state quickly anyway. This seems to indicate that
the relaxation time is adjusted so as to keep the system strongly hyperbolic toward the steady state for arbi-
trary m.

As for the value of Lr, we may simply take Lr = 1 so that the system becomes symmetric:
u

p

� �
t

¼
0 m

m 0

� �
u

p

� �
x

�
0

mp

� �
: ð2:29Þ
This is a good choice, but certainly may not be the best. We shall see later that the best value of Lr depends on
the type of the scheme and also on the purpose for which the scheme is employed.

Note that the equations we are trying to solve should now be completely hyperbolic. But we expect that the
solution is smooth because it will satisfy the diffusion equation eventually at the steady state. This can be a
great advantage because all techniques developed for hyperbolic problems can be applied without any special
mechanisms to capture discontinuities (of course, such a mechanism may help when an initial solution con-
tains some irregularity). In other words, we can only focus on the accuracy rather than other qualitative prop-
erties such as monotonicity. It may seem, by the way, that the isotropic nature of diffusion seems to have
disappeared, but as we shall see later it remains in the disguise of a set of waves traveling isotropically.

We are now ready to develop numerical schemes for the first-order diffusion system. We continue to focus
on the residual-distribution method in the rest of the paper, but the first-order system approach can equally
apply to other methods. In one-dimension, this can be clearly seen in the finite-difference formula arising from
the new diffusion schemes we present in the next section.
3. New diffusion schemes in one-dimension

In this section, we design a class of residual-distribution schemes for one-dimensional diffusion problems
based on the equivalent first-order system. In the first subsection, we define the one-dimensional first-order
diffusion system and discuss the property of the system. In the second subsection, we develop a class of
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residual-distribution schemes for the first-order system. In particular, we will discover that the Galerkin
scheme turns out to be a special case of the proposed scheme. In the third subsection, we show that some
of the schemes allow O(h) time step for explicit time integration toward the steady state. In the fourth subsec-
tion, Fourier analysis follows where Lr is defined to minimize the damping factor of the scheme, and this com-
pletes the design of the new schemes. Then, in the following subsection, we show from a truncation error
analysis that the scheme is second-order accurate for all variables.

3.1. First-order diffusion system

We consider the one-dimensional diffusion problem:
ut ¼ muxx in X ¼ ½0; 1�; ð3:1Þ

where m > 0, and both u(0) and u(1) are given as boundary conditions. Our interest is to obtain the steady state
solution to this problem. We then consider solving the following first-order system:
ut ¼ mpx;

pt ¼ ðux � pÞ=T r; ð3:2Þ
or written in the vector form,
Ut þ AUx ¼ Q; ð3:3Þ

where
U ¼ ½u; p�t; A ¼
0 �m

�1=T r 0

� �
; Q ¼ ½0;�p=T r�t; ð3:4Þ
with T r ¼ L2
r

m . It should be remembered that this system is equivalent to the original equation only in the steady
state. In fact, the solution behaves very differently in the transient phase. In particular, we find that the eigen-
values of the matrix A are �

ffiffiffiffiffiffiffiffiffiffi
m=T r

p
which are real (and called ‘frozen speed’ in the relaxation system [1]), and

therefore we see that the first-order system has an advective character that is not at all present in the original
diffusion problem. Indeed, the matrix A is diagonalizable with the matrix of the right eigenvectors R,
R ¼
�Lr Lr

1 1

� �
ð3:5Þ
as
R�1AR ¼ K ¼
ffiffiffiffiffiffiffiffiffiffi
m=T r

p
0

0 �
ffiffiffiffiffiffiffiffiffiffi
m=T r

p
" #

: ð3:6Þ
The view has now been totally switched from diffusion to advection, and hence the type of schemes we need
are advection schemes rather than central-difference schemes that are generally considered suitable for diffu-
sion. But this does not mean that the isotropic nature of the diffusion equation is totally lost. It manifests itself
as a pair of two waves traveling in the opposite directions at the same speed, which is isotropic as a whole.

3.2. Discretization

For simplicity, but without loss of generality, we consider a uniform grid over a domain of interest with the
mesh size h = xj+1 � xj, "j 2 {J}. We store the solution as well as the gradient at each node (uj,pj), j 2 {J}, and
then, with two boundary conditions available for u only, the task is to compute the steady state solution {uj} at
the interior nodes and {pj} at all nodes. Note that the number of unknowns is now exactly equal to the number
of cell-residuals. If there are Nc cells, we have 2Nc cell-residuals, and 2(Nc + 1) unknowns. But because of the
two boundary conditions (whether Dirichlet or Neumann), the actual number of unknowns is 2(Nc + 1) �
2 = 2Nc, i.e., the same as the number of cell-residuals. This means that all the cell-residuals can be driven to

zero exactly at the steady state, implying the existence of a unique solution for linear problems. This is not
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possible for scalar schemes which distribute a single cell-residual for muxx evaluated with reconstructed nodal
gradients. This is because in that case we have Nc cell-residuals for (Nc + 1) � 2 = Nc � 1 unknowns, i.e.,
always overdetermined.

We begin by evaluating the cell-residual, which is now a vector quantity, over cell C = [xj,xj+1] as
UC ¼
Z xjþ1

xj

ð�AUx þQÞdx: ð3:7Þ
Assuming the piecewise linear variation of U over the cell, we obtain
UC ¼ �ADUC þQCh; ð3:8Þ

where DUC = Uj+1 � Uj and QC ¼ ðQjþ1 þQjÞ=2. We then distribute this to the nodes, by a distribution coef-
ficient which is now a matrix BC

j giving a fraction of UC distributed to node j,
UC
j ¼ BC

j UC;UC
jþ1 ¼ BC

jþ1U
C; ð3:9Þ
where for conservation we must have
BC
j þ BC

jþ1 ¼ I; I ¼
1 0

0 1

� �
: ð3:10Þ
The precise form of BC
j is left open for a moment. Having done the distribution for all cells, we have the fol-

lowing semi-discrete equation at each node:
dUj

dt
¼ 1

hj
UL

j þ UR
j

h i
¼ 1

hj
BL

j UL þ BR
j UR

h i
; ð3:11Þ
where L and R denote the cells on the left and right of node j respectively, and hj is the measure of the dual
control volume centered at xj which is identical to the mesh size h for uniform grids. We then integrate this in
time until we reach the steady state. Note that we can use this scheme directly on non-uniform grids, simply by
replacing the mesh size h by the variable mesh size hC in the definition of the distribution matrices and setting
hj = (hL + hR)/2.

We now define the distribution matrix BC
j . The distribution matrix must be defined to reflect the physics of

the governing equation: isotropic for diffusion and upwind for advection. In our case, the equations we are
solving is not the diffusion equation anymore, but the equivalent first-order system which is hyperbolic with

the wave speeds �
ffiffiffiffiffiffiffiffiffiffi
m=T r

p
. We expect also that the solution is smooth because it finally becomes the solution

of the diffusion equation, and therefore there is no need to incorporate discontinuity-capturing mechanisms in
the scheme. Then, for simplicity, we employ the Lax–Wendroff distribution scheme, also known as Ni’s
scheme in the context of residual-distribution [36], which is second-order accurate for smooth solutions.
The scheme can be derived as follows. Consider the time expansion of the solution
Unþ1
j � Un

j þ DtUt þ
1

2
Dt2Utt ¼ Un

j þ Dt 1þ Dt
2

ot
� �

Ut: ð3:12Þ
By using the equation itself, but partially ignoring the effect of the source term for simplicity, we can write
Unþ1
j � Un

j þ Dt 1� Dt
2

Aox
� �

�AUx þQð Þ; ð3:13Þ
which is approximated as
Unþ1
j � Un

j þ Dt
1

2

UL
j

h
þ

UR
j

h

 !
� Dt

2
A

UR
j =h� UL

j =h

h

 !" #
ð3:14Þ

¼ Un
j þ

Dt
h

1

2
þ Dt

2h
A

� �
UL

j þ
1

2
� Dt

2h
A

� �
UR

j

� �
: ð3:15Þ
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This implies that the distribution matrix is defined as
BC
j ¼

1

2
I� s

2h
A; BC

jþ1 ¼
1

2
Iþ s

2h
A; ð3:16Þ
where Dt has been replaced by a time-like parameter s which does not have to be equal to the actual time step
because we are only interested in the steady state. Even if we take s to be the actual time step, the scheme will
not be time accurate because we have ignored the effect of the source term in the above derivation. Moreover,
it is even pointless to develop time accurate schemes for the first-order system because it is not equivalent to
the diffusion equation for time dependent problems unless Tr! 0.

We point out that the scheme can be interpreted as a sum of the central distribution and a least-squares
minimization term. The dissipation term can be derived by minimizing the residual in the least-squares norm,
e.g., following the least-squares finite-element method [20] or based on a discrete minimization formulation
[37]. In [26], this type of approach was used to derive a stabilization term in the residual-distribution schemes.

The parameter s can be thought of as a cell time step, and the scheme will be conservative as long as it is con-

stant over the cell. The simplest choice would then be the ratio of the mesh size h to the wave speed
ffiffiffiffiffiffiffiffiffiffi
m=T r

p
, giving
s ¼ kC
hffiffiffiffiffiffiffiffiffiffi
m=T r

p ; ð3:17Þ
where kC is a cell CFL number which is taken to be 1 to maximize the effect of error propagation over the cell.
We remark also that in the previous work [18,27], it is argued that diffusion is an isotropic process and

therefore it is natural to distribute the residual with equal weights,
BC
j ¼ BC

jþ1 ¼
1=2 0

0 1=2

� �
: ð3:18Þ
But in practice this scheme is not dissipative enough to damp high frequency errors, and in particular the high-
est frequency error cannot be damped at all [13]. The proposed scheme overcomes this problem by having a
dissipation term added to the isotropic distribution coefficient. Note however that this is not by design but
rather a natural consequence of solving the first-order system instead of the diffusion equation. The isotropic
nature of diffusion is automatically incorporated by way of applying a suitable advection scheme, which typ-
ically comes with some form of dissipation, for the first-order system that is hyperbolic and whose waves travel
isotropically. In fact, the proposed scheme can be shown to be an upwind scheme. To see this, consider the
distribution matrices (3.16) with s ¼ hffiffiffiffiffiffiffi

m=T r

p ,
BC
j ¼

1

2
I� 1

2
ffiffiffiffiffiffiffiffiffiffi
m=T r

p A; BC
jþ1 ¼

1

2
Iþ 1

2
ffiffiffiffiffiffiffiffiffiffi
m=T r

p A: ð3:19Þ
Since A can be diagonalized, we have
BC
j ¼

1

2
I� 1

2
ffiffiffiffiffiffiffiffiffiffi
m=T r

p R

ffiffiffiffiffiffiffiffiffiffi
m=T r

p
0

0 �
ffiffiffiffiffiffiffiffiffiffi
m=T r

p
" #

R�1 ¼ R
0 0

0 1

� �
R�1; ð3:20Þ

BC
jþ1 ¼

1

2
Iþ 1

2
ffiffiffiffiffiffiffiffiffiffi
m=T r

p R

ffiffiffiffiffiffiffiffiffiffi
m=T r

p
0

0 �
ffiffiffiffiffiffiffiffiffiffi
m=T r

p
" #

R�1 ¼ R
1 0

0 0

� �
R�1; ð3:21Þ
which shows that the solution mode with the negative wave speed is distributed to the left; the mode associated
with the positive wave speed is distributed to the right. This is nothing but upwinding. An interesting obser-
vation is that the choice s ¼ hffiffiffiffiffiffiffi

m=T r

p makes the distribution matrix singular, creating a nullspace that implies one-

sided distribution, i.e., upwind. This interpretation applies also in higher dimensions and may be used to check
if a given scheme has an upwinding character.

It should be noted however that this is a rather special case where the Lax–Wendroff scheme and the
upwind scheme coincide to each other. This is because the eigenvalues of the matrix A are of the equal mag-
nitude with opposite signs, i.e., equal modulus. In general, an upwind scheme for a system is constructed by
defining s as a matrix such as
s ¼ hjAj�1
: ð3:22Þ
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If all eigenvalues are equal in magnitude, this reduces to a scalar. This is exactly the case for the first-order
diffusion system.

We now show that the new residual-distribution scheme is closely related to the Galerkin scheme. Expand
the right hand side of the semi-discrete Eq. (3.11) with (3.16) for arbitrary s to get
duj

dt
¼ 1

2h
ðmDpL þ mDpRÞ þ

sm

2h2T r

½DuR � �pRh� ðDuL � �pLhÞ�

¼ m 1� s
2T r

� �
pjþ1 � pj�1

2h
þ s

2T r

ujþ1 � 2uj þ uj�1

h2

� �
; ð3:23Þ

dpj

dt
¼ 1

2hT r

½ðDuL � �pLhÞ þ ðDuR � �pRhÞ� þ s

2h2T r

½mDpR � mDpL�

¼ 1

T r

1

2h
ðujþ1 � uj�1Þ �

1

2
ð�pL þ �pRÞ

� �
þ sm

2T r

pjþ1 � 2pj þ pj�1

h2
; ð3:24Þ
where DpL = pj � pj�1, DpR = pj+1 � pj, �pL ¼ ðpj þ pj�1Þ=2, and �pR ¼ ðpjþ1 þ pjÞ=2; similarly for u. It is then
immediate that the choice
s ¼ 2T r ð3:25Þ
decouples the variables and yields the Galerkin scheme for uj. Hence, the Galerkin scheme emerges as a special
case of our residual distribution scheme. The cell-residual for the Galerkin scheme turns out to be associated
not with the original diffusion equation but with the first-order system. Therefore, implemented this way, the
Galerkin scheme has the residual property: if the cell-residual UT for the first-order system vanishes, no up-
dates will be sent to the nodes. Because of the decoupling, it is possible to solve for uj first, and then compute
pj, which means that this scheme is simply the Galerkin scheme for uj combined with implicit reconstruction or
compact differentiation.

Also note from (3.23) and (3.24) that the proposed scheme can be implemented as a three-point finite-
difference scheme or even a finite-volume scheme whose interface flux can easily be identified. But as men-
tioned in Section 2.1, in one-dimension, the finite-volume schemes and the residual-distribution schemes are
identical except for the treatment of source terms: the finite-volume scheme typically evaluates the source
term directly by the cell average while the residual-distribution scheme evaluates the source term by the
trapezoidal rule on each cell and weights them by the distribution coefficients. Then, the residual-distribu-
tion scheme has the residual property whereas the finite-volume scheme does not. This limits the accuracy of
the finite-volume scheme to first-order. To improve the accuracy, methods to ensure the residual property
for finite-volume schemes [24,25] must be employed. In the case of the first-order diffusion system, the
source term is inevitable, and therefore the finite-volume scheme will be first-order accurate unless the
source term is discretized so as to have the residual property. The scheme above is certainly one of those
having this property.

In the rest of the paper, we focus on two choices of s:
hffiffiffiffiffiffiffiffiffiffi
m=T r

p and 2Tr. The latter implements the Galerkin

scheme as a residual-distribution scheme, and may be preferred in some cases. But we will show next that the
former has a great advantage over the latter particularly for steady calculations.

3.3. O(h) Time step

To reach the steady state, we integrate the semi-discrete Eq. (3.11) in time until the solution stops chang-
ing. Any time integration scheme can be employed for this purpose. In any case, the time step is restricted
by the maximum modulus of the eigenvalues of the coefficient matrix Cj of the scheme written in the fol-
lowing form:
dUj

dt
¼ Cj�1Uj�1 þ CjUj þ Cjþ1Ujþ1: ð3:26Þ
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By expanding the right hand side of (3.11) with (3.16), we find
Cj ¼
� sm

h2Tr
0

0 � sm=h2 þ 1=2

T r

2
664

3
775: ð3:27Þ
Clearly, the maximum modulus of the eigenvalues is sm=h2þ1=2
T r

. Then, for example, in the case of the forward
Euler time integration, the time step Dt is restricted by
Dt 6
T r

sm=h2 þ 1=2
: ð3:28Þ
For the purpose of converging to the steady state, we simply take it as an equality to maximize the time step.
For small h, this is approximately
Dt 6
h2T r

sm
; ð3:29Þ
and for s = 2Tr, this will give the well-known severe stability limit for the Galerkin scheme,
Dt 6
h2

2m
: ð3:30Þ
On the other hand, for the choice s ¼ hffiffiffiffiffiffiffi
m=T r

p with T r ¼ L2
r

m , we obtain
Dt 6
hffiffiffiffiffiffiffiffiffiffi
m=T r

p ¼ hLr

m
: ð3:31Þ
This is remarkable. The time step is proportional to h instead of h2. This means that the number of time steps
required to reach the steady state increase linearly with the mesh size. This is a great advantage over the con-
ventional schemes. Of course, this is true only if Lr = O(1). But we will see later that there is a case where Lr

can be defined as such.
Finally, we point out that the condition (3.31) is nothing but the CFL condition for an advection equation

with the advection speed
ffiffiffiffiffiffiffiffiffiffi
m=T r

p
. As a matter of fact, O(h) time step is typical for advection schemes. This

means that O(h) time step is not something special to the residual-distribution schemes but rather special
to the first-order system approach, and therefore we certainly can have it also for the finite-difference or
the finite-volume schemes.

3.4. Fourier analysis

Consider a Fourier mode of phase angle (or nondimensional wave number) b 2 [0,p],
Ub ¼ eibx=hU0; ð3:32Þ

where Ub = (ub,pb) and U0 = (u0,p0). Inserting this into the original diffusion Eq. (3.1), we obtain
dub

dt
¼ kdub; ð3:33Þ
where
kd ¼ �
m

h2
b2: ð3:34Þ
On the other hand, for the first-order system (3.2), we obtain
dUb

dt
¼MfosU

b; ð3:35Þ
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where
Mfos ¼
0 m

ib
h

ib
hT r

� 1

T r

2
664

3
775: ð3:36Þ
The eigenvalues of this matrix are
kfos ¼ �
1

2T r

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4mT r

h2
b2

r" #
: ð3:37Þ
For small b, we find
kfos ¼
� m

h2
b2 1þ mT r

h2
b2

� �
þOðb6Þ;

� 1

T r

þ m

h2
b2 þ m2T r

h4
b4 þOðb6Þ;

8>><
>>: ð3:38Þ
in which the first eigenvalue accurately represents the diffusion operator with second-order accuracy. This
shows that the difference between the first-order system and the diffusion equation is of O(b2) for small b. Note
that the eigenvalues can be complex. This happens when
b > bcr; bcr ¼
h

2
ffiffiffiffiffiffiffi
mT r

p ; ð3:39Þ
and the Fourier mode with b > bcr begins to propagate. Recall that we take T r ¼ L2
r

m , then we have
bcr ¼
h

2Lr

; ð3:40Þ
and so it is independent of m.
For the Lax–Wendroff scheme, (3.11) with (3.16), we obtain the following equation:
dUb

dt
¼MUb; ð3:41Þ
where
M ¼
� sm

h2T r

ð1� cos bÞ � im
2hT r

ðs� 2T rÞ sin b

i sin b
hT r

� sm

h2T r

ð1� cos bÞ � 1

2T r

ð1þ cos bÞ

2
664

3
775: ð3:42Þ
The eigenvalues are
k ¼ � 2sm

h2T r

sin2 b
2
� 1

2T r

cos2 b
2
� 1

2T r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos4

b
2
þ 2m

h2
ðs� 2T rÞ sin2 b

r
: ð3:43Þ
For small b, we find
k ¼
� m

h2
b2 þ m

12h4T r

h2T r � 3mðs� 2T rÞ2
h i

b4 þOðb6Þ;

� 1

T r

þ 1

T r

1

4
� mðs� T rÞ

h2

� �
b2 þOðb4Þ:

8>><
>>: ð3:44Þ
which, compared with (3.38), confirms itself that the scheme is indeed second-order accurate for the first-order
system, and consequently second-order accurate for the diffusion equation as well.

First, we consider the case s = 2Tr. In this case, the eigenvalues simplify to
k ¼ � 4m

h2
sin2 b

2
; � 4m

h2
sin2 b

2
� 1

T r

cos2 b
2
; ð3:45Þ
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which are always real and thus the errors are purely damped. The damping property of the scheme depends on
the choice of Lr. Suppose that we employ the forward Euler time integration. Then, the eigenvalues g1 and g2

of the amplification matrix of the fully discrete equation G = I + DtM where Dt ¼ T r

sm=h2þ1=2
are given by
g1 ¼ 1� 8

4þ ðh=LrÞ2
sin2 b

2
; g2 ¼

4� ðh=LrÞ2

4þ ðh=LrÞ2
cos2 b

2
: ð3:46Þ
If we compare this with the point Jacobi iteration applied to solving uxx = 0
unþ1
j ¼ un

j þ
x
2

un
jþ1 � 2un

j þ un
j�1

� �
; ð3:47Þ
where x is a relaxation factor 0 6 x 6 1, whose amplification factor is given by [38]
1� 2x sin2 b
2
; ð3:48Þ
we immediately find
x ¼ 1

1þ 1
4
ðh=LrÞ2

; ð3:49Þ
which we write, introducing Lr ¼ h
2k,
x ¼ 1

1þ k2
: ð3:50Þ
It is well known that x ¼ 2
3

gives the optimal damping for high frequency errors (p/2 6 b 6 p) and makes the
scheme an effective smoother for multigrid [38]. This is achieved in our scheme by taking k ¼ 1=

ffiffiffi
2
p

, giving
Lr ¼
hffiffiffi
2
p : ð3:51Þ
In this case, jg1j 6 1
3

is guaranteed for p/2 6 b 6 p, and it is clear from (3.46) that we have also jg2j 6 1
3

for the
entire frequency. Therefore, the scheme is a good smoother not only for uj but also for the other variable.
However, if the scheme is used simply to iterate toward the steady state, this is not optimal. We should use
the largest possible relaxation factor which corresponds to k! 0. Practically, we may take any small number
such as k = 0.01. But as we shall see later, if k is too small, we encounter an accuracy problem: the scheme
reduces to first-order accurate for pj. Experimentally, we found that k = 0.2 would not suffer from this
problem:
Lr ¼
h

0:4
: ð3:52Þ
This means that this scheme is not well suited for iterating toward the steady state.
Now, we consider the case s ¼ hffiffiffiffiffiffiffi

m=T r

p . In this case, the eigenvalues can be complex, and it is better to be com-

plex. If complex, the eigenvalues are complex conjugates, thus having the same damping factor and propaga-
tion speed. There is no possibility that either uj or pj will converge much quicker than the other. Also, the
damping is much more effective in the complex branch than the real branch that approximates the diffusion
operator for low frequency modes. This can be seen in Fig. 5 in which the real part of the eigenvalues are plot-
ted against the phase angle. For all schemes and the equations, the eigenvalues are real for low frequency
modes and make a second-order contact with the eigenvalue of the exact diffusion operator. This part, being
closer to 0 than the complex branch in general, is a reason for slow convergence and we wish to avoid it. We
will therefore choose Lr such that the eigenvalues are complex for all discrete error modes (b P ph). For

s ¼ hffiffiffiffiffiffiffiffiffiffi
m=T r

p ¼ hLr

m
, the expression inside the square root in (3.43) is quadratic in Lr. It is easy to show that this

is negative if
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Lr P
h
4

1þ 1

sin ph
2

� �
; ð3:53Þ
where we have set b = ph to ensure that we have complex eigenvalues for all possible discrete error modes. In
fact, in Fig. 5, the lowest discrete mode (b = ph) is indicated by the vertical line, and we see that it passes
through the branch point as designed. Note that this Lr is not O(h) but O(1) because
Lr P
h
4

1þ 1

sin ph
2

� �
� 1

2p
þ h

4
þOðh2Þ; ð3:54Þ
and so, as we claimed earlier, O(h) time step is guaranteed for Lr that satisfies the condition (3.53). An optimal
value of Lr can be derived by minimizing the amplification factor for the fastest convergence. For the forward
Euler time integration, the eigenvalues of the amplification matrix of the fully discrete equation are complex
conjugates whose magnitude jgj is given by
jgj2 ¼ ½2ðLr=hÞ þ cos b�½2ðLr=hÞ � 1�
½2ðLr=hÞ þ 1�2

: ð3:55Þ
Let Lr ¼
h
4

1þ 1

sin ph
2

� �
K and K P 1, then we find for small h,
jgj ¼ 1� p
K
ð3� cos bÞhþOðh2Þ: ð3:56Þ
It is then obvious that K = 1 gives the minimum and therefore we set
Lr ¼
h
4

1þ 1

sin ph
2

� �
; ð3:57Þ
or we can use the following simple approximation:
Lr ¼
1

6
þ h

4
; ð3:58Þ
which satisfies the condition (3.53) for h < 1
3
.
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Taking advantage of the propagation as an additional means to remove the error, this scheme takes a full
advantage of the hyperbolic character of the first-order diffusion system, and it is therefore well suited for iter-
ating toward the steady state. The polar plot of the eigenvalues of this scheme and the purely isotropic scheme
is shown in Fig. 6. Both schemes allow the error modes to propagate, but the one with nonzero s (the upwind
scheme) has much better damping.

3.5. Truncation error

Expand smooth functions u and p around node j, and substitute into (3.11) with (3.16) to obtain
dUj

dt
¼ I� s

2
Aox

h i
rþOðh2Þ; ð3:59Þ
where
r ¼ ½mpx; ðux � pÞ=T r�t; ð3:60Þ

or component-wise
duj

dt
¼ mpx þ

sm
2T r

ðux � pÞx þOðh2Þ; ð3:61Þ

dpj

dt
¼ ðux � pÞ=T r þ

sm
2T r

ðpxÞx þOðh2Þ: ð3:62Þ
We remark that the scheme has the residual vector r as a factor in the truncation error, which vanishes at the
steady state and second-order accuracy is obtained. This is a property shared with the residual-based compact
scheme [39]. In a way, residual-distribution is an alternative form of implementing the compact schemes.

To get more insight, suppose that the smooth solutions are exact solutions to the discrete equations in the
steady state ðduj=dt ¼ dpj=dt ¼ 0Þ. Then, they satisfy
0 ¼ mpx þ
sm

2T r

ðux � pÞx þOðh2Þ; ð3:63Þ

0 ¼ ðux � pÞ=T r þ
sm

2T r

ðpxÞx þOðh2Þ: ð3:64Þ
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For s = 2Tr, we obtain
0 ¼ muxx þOðh2Þ; ð3:65Þ
0 ¼ ðux � pÞ=T r þ mðpxÞx þOðh2Þ; ð3:66Þ
which clearly shows that the solution u converges to the solution of the original diffusion equation with sec-
ond-order accuracy. We write the second equation by expanding T r ¼ L2

r

m with Lr ¼ h
2k,
0 ¼ 4mk2

h2
ðux � pÞ þ mðpxÞx þOðh2Þ: ð3:67Þ
For k = O(1), this shows that the numerical solution converges to the solution of ux � p = 0 with second-order
accuracy. But if k = O(h), the scheme is not consistent, solving a wrong equation. Also, as k! 0, it converges
to the solution of
0 ¼ mðpxÞx þOðh2Þ: ð3:68Þ

This shows that the scheme is not consistent, not solving ux � p = 0 nor even mpx = 0. But fortunately in one-
dimension, the scheme is in fact consistent but only first-order accurate. This is because for one-dimensional
problems, not only the nodal residuals but also the cell-residuals which approximate mpx vanish at the steady
state. This ensures at a node that px = O(h), thus the scheme is consistent and first-order accurate. This is the
accuracy problem mentioned in the previous subsection.

On the other hand, for s ¼ hffiffiffiffiffiffiffi
m=T r

p ¼ hLr

m , we obtain
0 ¼ mpx þ
mh
2Lr

ðux � pÞx þOðh2Þ; ð3:69Þ

0 ¼ m

L2
r

ðux � pÞ þ mh
2Lr

ðpxÞx þOðh2Þ: ð3:70Þ
For Lr = O(1) which is the case of (3.57), this shows clearly that the numerical solution converges to the solu-
tion of the first-order system (3.2) as h! 0. By eliminating the first-order terms using the equations them-
selves, we find
0 ¼ mpx �
mh2

4
ðpxÞx þOðh2Þ; ð3:71Þ

0 ¼ ðux � pÞ � h2

4
ðux � pÞx þOðh2Þ; ð3:72Þ
which shows that the solution converges with second-order accuracy.
Finally, we point out that by setting Lr ¼ h

2
we recover the Galerkin scheme which corresponds to s = 2Tr

with Lr ¼ h
2
, i.e., the two choices of s are not independent of each other.

3.6. Boundary conditions

As mentioned earlier, with two boundary conditions, the number of unknowns exactly matches the number
of cell-residuals, and thus for a linear problem there exists a unique solution. The boundary conditions can be
either the Dirichlet type where uj is specified or the Neumann type where pj is specified. In any case, only one
value is specified on each boundary. This can be interpreted also as a characteristic condition. Since the first-
order system is hyperbolic with two characteristics running to the left and the right, there is always one char-
acteristic coming into the domain from through the boundary, and therefore we need to specify one value on
the boundary.
4. New diffusion schemes in two dimensions

We now consider two-dimensional problems, and develop again a class of residual-distribution schemes for
the two-dimensional first-order diffusion system. We shall see that the two-dimensional schemes share many of
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the remarkable properties of the one-dimensional schemes. But there is also a striking difference. Unlike the
one-dimensional problem, all cell-residuals cannot be made to vanish in two dimensions because of a counting
problem: the number of elements is not equal to the number of nodes. This brings a consistency problem in the
case Lr!1.

We remark that only triangular unstructured grids will be considered here. For structured grids, the one-
dimensional scheme can be applied as a finite-difference scheme or a finite-volume scheme by decomposing the
two-dimensional equation into dimension by dimension one-dimensional equations. This can be done in a
straightforward manner (see [36,40] for example). We point out also that a finite-volume scheme can be devel-
oped in a similar manner for unstructured grids by applying a one-dimensional flux function normal to the cell
face. Again, it should be remembered that these schemes will be only first-order accurate unless the source
term in the first-order system is discretized to guarantee the residual property.

4.1. First-order diffusion system

We consider the two-dimensional scalar diffusion problem,
ut ¼ mðuxx þ uyyÞ in X; ð4:1Þ

where m > 0 and u = g(x,y) is given as a boundary condition on oX . Our interest is again to obtain the steady
state solution of this problem. As in one-dimension, we consider solving the equivalent first-order system
instead,
ut ¼ mðpx þ qyÞ;
pt ¼ ðux � pÞ=T r;

qt ¼ ðuy � qÞ=T r;

ð4:2Þ
where T r ¼ L2
r

m , or written in the vector form,
Ut þ AUx þ BUy ¼ Q; ð4:3Þ

where
U ¼ ½u; p; q�t; Q ¼ ½0;�p=T r;�q=T r�t; ð4:4Þ

A ¼
0 �m 0

�1=T r 0 0

0 0 0

2
64

3
75; B ¼

0 0 �m

0 0 0

�1=T r 0 0

2
64

3
75: ð4:5Þ
Again, this system is equivalent to the diffusion equation only in the steady state. In converging to the steady
state, this system behaves like a hyperbolic system. In fact, the matrix An = Anx + Bny is diagonalizable for
any chosen normal vector n = (nx,ny) with the following matrix of right eigenvectors R:
R ¼
�Lr Lr 0

nx nx �ny

ny ny nx

2
64

3
75; ð4:6Þ
as
R�1AnR ¼ K ¼

ffiffiffiffiffiffiffiffiffiffi
m=T r

p
0 0

0 �
ffiffiffiffiffiffiffiffiffiffi
m=T r

p
0

0 0 0

2
64

3
75: ð4:7Þ
The eigenvalues of the matrix An are �
ffiffiffiffiffiffiffiffiffiffi
m=T r

p
and 0.

The vanishing eigenvalue is associated with the consistency constraint,
qx � py ¼ 0; ð4:8Þ
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under which the system (4.2) needs to be solved. This states that an inconsistent mode, represented as a ‘vor-
ticity’ of the gradient vector (p,q), must vanish at a steady state. It is easy to show that this satisfies
ðqx � pyÞt ¼ �
1

T r

ðqx � pyÞ: ð4:9Þ
This is an ordinary differential equation, showing that the inconsistency is purely damped out at the time scale
of Tr. This is what the stationary mode is responsible for: it damps out any inconsistency contained in an ini-
tial solution. For this reason, this may be called the inconsistency damping mode.

The other two eigenvalues represent a wave traveling isotropically (a wave speed independent of n implies a
circular wave), giving an alternative description of isotropic diffusion. Hence, as in one dimension, we will con-
sider advection schemes for the first-order diffusion system (4.3).

4.2. Discretization

To discretize the system, we divide the domain into a set of triangles {T} and a set of vertices {V}, and store
the solution at each vertex (uj, pj), j 2 {V}. Now, the task is to compute the steady state solution {uj} at the
interior nodes, and {pj, qj} at all nodes except for the boundary nodes on which they can be computed from u

given on the boundary. Note that this time the number of unknowns is much less than (typically a half of) the
number of cell-residuals. Therefore, all cell-residuals cannot be driven to zero at the steady state. Only nodal
residuals, which are weighted averages of cell-residuals, can be driven to zero, and these weights are deter-
mined by the distribution matrices.

We begin by defining the cell-residual over cell T,
UT ¼
ZZ

T
ð�AUx � BUy þQÞdxdy: ð4:10Þ
Assuming a piecewise linear variation of U over the cell, we obtain
UT ¼ �
X3

i¼1

KiUi þQT ST ; ð4:11Þ
where
Ki ¼
1

2
ðA;BÞ � ni; QT ¼

Q1 þQ2 þQ3

3
; ð4:12Þ
and ni is the inward scaled normal (see Fig. 4). We then distribute this to the nodes by a distribution matrix BT
i

UT
i ¼ BT

i UT ; ð4:13Þ

where
UT ¼
X3

i¼1

UT
i ;

X3

i¼1

BT
i ¼ I; ð4:14Þ
and as a result we have the following semi-discrete equation at each node:
dUj

dt
¼ 1

Sj

X
T2fT jg

BT
j UT ; ð4:15Þ
where Sj is the medial dual cell area (see Fig. 4). This is then integrated in time to reach the steady state.
To distribute the cell-residual, we employ the Lax–Wendroff distribution. Consider the time expansion of

the solution
Unþ1
j � Un

j þ DtUt þ
1

2
Dt2Utt ¼ Un

j þ Dt Iþ Dt
2

ot
� �

Ut: ð4:16Þ
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By using the equation itself, but partially ignoring the effect of the source term, we obtain
Unþ1
j � Un

j þ Dt I� Dt
2

Aoxþ Boyð Þ
� �

�AUx � BUy þQ
	 


; ð4:17Þ
which can be integrated over the median dual control volume around j as was done in deriving the Galerkin
scheme in Section 2.3, resulting
SjU
nþ1
j � SjU

n
j þ Dt

X
T2fT jg

1

3
Iþ Dt

4ST
ðA;BÞ � nT

j

� �
UT : ð4:18Þ
This implies that the distribution matrix is defined as
BT
i ¼

1

3
Iþ s

2ST
Ki; ð4:19Þ
which is again the sum of the central distribution and the least-squares dissipation. Here, as in one-dimension,
Dt has been replaced by s and it is taken as a free parameter. Taking it as a time-like parameter in particular,
we define s by
s ¼ kT
hTffiffiffiffiffiffiffiffiffiffi
m=T r

p ; hT ¼
2ST

maxi2fiT gjnij
; ð4:20Þ
where we set kT = 1 to maximize the effect of error propagation. Note that the distribution matrices sum up to
the identity matrix over the triangle T as long as s is constant over the triangle (dissipation terms sum up to
zero), and so the scheme is conservative.

In one-dimension, the scheme derived this way happens to be upwind. But this is not the case in two dimen-
sions. Recall that the upwind distribution matrix must be singular, implying the existence of a nullspace. It is
easy to show that the matrix (4.19) is singular only if
s ¼ 4

3

ST

jnij

ffiffiffiffiffi
T r

m

r
: ð4:21Þ
This shows that s should not be constant but depend on the node for the scheme to be upwind. Therefore, the
scheme with s as in (4.20) can be made to be upwind by taking kT ¼ 4

3
, but this is true only for one particular

node associated with the maximum height. In general, this scheme distributes the residual to all nodes. A full
upwind scheme can be obtained by defining s as a matrix defined by
s ¼ 2ST

3
jKij�1

; ð4:22Þ
with which the distribution matrix (4.19) becomes
BT
i ¼

1

3
Iþ 1

3
jKij�1

Ki ¼
1

3
RiðIþ jKij�1KiÞR�1

i ¼
1

3
Ri½Iþ signðKiÞ�R�1

i ð4:23Þ
where sign(ki) may be set to be zero for the null eigenvalue mode, so that the distribution becomes isotropic for
that mode, exactly as is done by the Lax–Wendroff scheme (4.19). For the first-order diffusion system, this
upwind matrix can be analytically obtained as follows,
BT
i ¼

1

3

1 �Lrnx
i �Lrn

y
i

�nx
i =Lr 1 0

�ny
i =Lr 0 1

2
64

3
75; ð4:24Þ
where ni ¼ ðnx
i ; n

y
i Þ. It follows immediately from this that
X3

i¼1

BT
i ¼ I; ð4:25Þ
because
P3

i¼1ni ¼ 0, and therefore the scheme is conservative. Note that the upwind scheme is not unique in
two dimensions. This is just one example of upwind distribution schemes, and other upwind schemes can also
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be applied such as the matrix LDA scheme [41]. It should be noted however that the solution is smooth for
diffusion problems and therefore the focus should rather be on the accuracy. Therefore, the scheme does not
need to be upwind and the Lax–Wendroff distribution scheme is more than adequate in this case. For this
reason, we here stick to the simple Lax–Wendroff scheme and do not explore other possibilities. We will have
to discuss other possibilities when we consider the advection-diffusion problems for which upwinding can be
very important.

We now show that the Galerkin discretization is obtained by taking s = 2Tr exactly as in one-dimension.
Expand the first component of (4.15) with (4.19),
Sj
duj

dt
¼
X

T2fT jg

m
3
ðpT

x þ qT
y ÞST �

sm
4T r

fruT � ð�pT ; qT Þg � nT
j

� �
: ð4:26Þ
Using the following identities:
ðpT
x þ qT

y ÞST ¼
1

2

X3

i¼1

ðpi; qiÞ � nT
i ; ð4:27Þ

ð�pT ; qT Þ � nT
j ¼

1

3

X3

i¼1

ðpi; qiÞ � nT
j ; ð4:28Þ
where we identify i = 1 as j, we obtain
Sj
duj

dt
¼ � sm

4T r

X
T2fT jg

ruT � nT
j þ

m
6

X
T2fT jg

X3

i¼1

ðpi; qiÞ � nT
i þ

s
2T r

nT
j

� �
: ð4:29Þ
The first term is nothing but the Galerkin discretization, and the second term is a coupling term with p and q

which can be simplified for s = 2Tr as
X3

i¼1

ðpi; qiÞ � nT
i þ nT

j

� �
¼ 2ðpj; qjÞ � nT

j � ðp2; q2Þ � nT
3 � ðp3; q3Þ � nT

2 : ð4:30Þ
This all vanishes when summed over a set of triangles {Tj} unless node j is on the boundary (see Fig. 7), and
therefore we are left with the Galerkin part,
Sj
duj

dt
¼ � m

2

X
T2fT jg

ruT � nT
j : ð4:31Þ
So, again, the Galerkin discretization arises as a special case of a residual-distribution scheme. It is a residual-
distribution scheme with the residual defined for the first-order diffusion system. We remark that this is similar
Fig. 7. Normals for triangle T 2 {Tj}.
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to the situation that a least-squares residual-distribution scheme developed in [37] for the Cauchy–Riemann
system turned out to be the Galerkin scheme for the associated Laplace’s equations. In both cases, the Galer-
kin scheme arises from a residual-distribution scheme for the associated first-order system. Moreover, note
that in both cases the Galerkin discretization comes from the least-squares minimization (the least-squares
scheme itself or the least-squares dissipation term in the Lax–Wendroff scheme). In fact, the connection be-
tween the least-squares method for the first-order system and the Galerkin discretization for the associated
second-order equation has already been pointed out by Jiang [20].

4.3. O(h) Time step

For time integration, we find a stability condition based on the eigenvalues of the coefficient matrix Cj for
Uj of the scheme written in the following form:
dUj

dt
¼
X
i2fijg

CiUi; ð4:32Þ
where the sum is over the nodes in the compact stencil: the node j and its immediate neighbors, denoted by {ij}.
By expanding the right hand side of (4.15) with (4.19), we find the coefficient matrix for Uj as
Cj ¼
1

SjT r

�
X

T2fT jg

sm
8ST
jnT

j j
2 0 0

0 �
X

T2fT jg

ST

9
þ sm

8ST
ðnx

jÞ
2

� �
�
X

T2fT jg

sm
8ST

nx
jn

y
j

0 �
X

T2fT jg

sm
8ST

nx
jn

y
j �

X
T2fT jg

ST

9
þ sm

8ST
ðny

jÞ
2

� �

2
6666666664

3
7777777775
: ð4:33Þ
The maximum modulus of the eigenvalues, which is relevant to the stability, is given by
jkj ¼ 1

SjT r

X
T2fT jg

ST

9
þ sm

8ST
jnT

j j
2

� �
þ sm

16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

T2fT jg

ðnx
jÞ

2 � ðny
jÞ

2

ST

0
@

1
A

2

þ 4
X

T2fT jg

nx
jn

y
j

ST

0
@

1
A

2
vuuut

2
64

3
75; ð4:34Þ
where nT
j ¼ ðnx

j ; n
y
jÞ. The time step Dt is then restricted locally by
Dt 6
Sj

jkj ; ð4:35Þ
whose minimum over all nodes will give a global time step condition. For the purpose of converging to the
steady state, we simply take it as an equality to maximize the time step,
Dt ¼ Sj

jkj : ð4:36Þ
For a practical purpose, the maximum modulus jkj in (4.34) can be simplified by the Cauchy-Schwarz
inequality,
X
T2fT jg

aT bT

0
@

1
A

2

6

X
T2fT jg

ðaT Þ2
0
@

1
A X

T2fT jg
ðbT Þ2

0
@

1
A; ð4:37Þ
with aT ¼ ðnx
j þ ny

jÞ=
ffiffiffiffiffi
ST
p

and bT ¼ ðnx
j � ny

jÞ=
ffiffiffiffiffi
ST
p

, to
jkj� ¼ 1

SjT r

X
T2fT jg

ST

9
þ 3sm

16ST
jnT

j j
2

� �
P jkj: ð4:38Þ
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Then, we may take
Dt ¼ Sj

jkj� 6
Sj

jkj : ð4:39Þ
This is a more severe restriction but simpler to implement. For a regular triangular grid (see Fig. 8), the con-
dition (4.35) simplifies to
Dt 6
3T r

1þ 6sm

h2

; ð4:40Þ
which is approximately, for small h,
Dt 6
h2T r

2sm
ð4:41Þ
and therefore, for s = 2Tr, this gives the two-dimensional version of the well-known severe stability limit for
the Galerkin scheme,
Dt 6
h2

4m
: ð4:42Þ
On the other hand, s ¼ hTffiffiffiffiffiffiffi
m=T r

p and T r ¼ L2
r

m gives (note that hT = h for these regular triangles by definition; see
(4.20)),
Dt 6
hLr

2m
: ð4:43Þ
Hence, again, the time step is proportional to h instead of h2, for Lr = O(1). The remarkable property of the
one-dimensional scheme carries over to two dimensions.

4.4. Fourier analysis

Consider again a regular triangular grid (see Fig. 8), and define a Fourier mode of phase angle b = (bx, by)
with bx, by 2 [0,p],
Ub ¼ eiðbxx=hþby y=hÞU0: ð4:44Þ

Inserting this into the original diffusion Eq. (4.1), we get
Fig. 8. A regular triangular grid.
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dub

dt
¼ kdub; ð4:45Þ
where
kd ¼ �
m

h2
b2; ð4:46Þ
which is identical to the one-dimensional counterpart. In the case of the first-order system (4.2), we obtain
dUb

dt
¼MfosU

b; ð4:47Þ
where
Mfos ¼

0 m
ibx

h
m

iby

h
ibx

hT r

� 1

T r

0

iby

hT r

0 � 1

T r

2
66666664

3
77777775
: ð4:48Þ
The eigenvalues are
kfos ¼
� 1

2T r

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4mT r

h2
b2

r !
;

� 1

T r

;

8>>><
>>>:

ð4:49Þ
where the first two are exactly the same as those in one-dimension and therefore we have exactly the same
condition as in one-dimension for these eigenvalues to be complex,
b > bcr; bcr ¼
h

2
ffiffiffiffiffiffiffi
mT r

p ¼ h
2Lr

: ð4:50Þ
The third eigenvalue corresponds to the inconsistency damping mode.
On the other hand, for the Lax–Wendroff scheme, i.e., (4.15) with (4.19), we find
dUb

dt
¼MUb; ð4:51Þ
where
M ¼ 1

T r

� smðcx þ cyÞ
h2

�imðs� 2T rÞSxy

6h
�imðs� 2T rÞSyx

6h
iSxy

3h
� 1

3
� smcx

h2
� 2

9
Cp

smCm

2h2

iSyx

3h
smCm

2h2
� 1

3
� smcy

h2
� 2

9
Cp

2
6666664

3
7777775
; ð4:52Þ
where
cx ¼ 1� cosðbxÞ;
cy ¼ 1� cosðbyÞ;
Sxy ¼ sinðbx þ byÞ þ 2 sinðbxÞ � sinðbyÞ;
Syx ¼ sinðbx þ byÞ þ 2 sinðbyÞ � sinðbxÞ;
Cp ¼ cosðbx þ byÞ þ cosðbyÞ þ cosðbxÞ;
Cm ¼ cosðbx þ byÞ � cosðbyÞ � cosðbxÞ þ 1:
First we consider the case s = 2Tr. In this case, the eigenvalue associated with the Galerkin discretization can
be trivially found and is given by
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k1 ¼ �
4m

h2
sin2 bx

2
þ sin2 by

2

� �
: ð4:53Þ
For the forward Euler time stepping, the amplification factor g1 = 1 + Dtk1 with Dt defined in (4.40) is given
by
g1 ¼ 1� 1

1þ 1
12
ðh=LrÞ2

sin2 bx

2
þ sin2 by

2

� �
: ð4:54Þ
Comparing this with the amplification factor of the point Jacobi iteration [38],
g ¼ 1� x sin2 bx

2
þ sin2 by

2

� �
; ð4:55Þ
we find
x ¼ 1

1þ 1
3
k2
; ð4:56Þ
where we have set Lr ¼ h
2k. It is well known that x ¼ 4

5
gives the optimal smoothing factor for high frequency

modes (p
2
6 bx 6 p or p

2
6 by 6 p) [38]. This is achieved in our scheme by taking k ¼

ffiffi
3
p

2
, i.e.,
Lr ¼
hffiffiffi
3
p : ð4:57Þ
In this case, jg1j 6 0.6 is guaranteed for high-frequency modes. Unfortunately, unlike the one-dimensional
scheme, the amplification factors associated with the other two eigenvalues exceed 0.6 and hence the scheme
is not entirely optimal. But the variables are completely decoupled in this case anyway, i.e., the gradient vari-
ables can be computed separately as a compact differentiation, and therefore here we do not even attempt to
optimize the scheme for all solution modes. On the other hand, for the fastest convergence toward the steady
state, we wish to take x = 1, which is possible by taking
k ! 0: ð4:58Þ

However, this causes a serious problem: the scheme will not be consistent for pj and qj. We discuss this prob-
lem in the next subsection. Here, we only mention that this is not a suitable explicit scheme for the purpose of
iterating toward the steady state. Therefore, we will not discuss this scheme further.

Next, we consider the case s ¼ hTffiffiffiffiffiffiffi
m=T r

p . In this case, in principle, the eigenvalues can be found since they are

the roots of a cubic equation, but they are too complicated to analyze. We therefore focus on the persistent
modes, i.e., low frequency modes, and derive an estimate for Lr for fast convergence toward the steady state.
For small bx and by, the amplification matrix (4.52) simplifies to
M � 1

T r

�
smðb2

x þ b2
yÞ

2h2

�imðs� 2T rÞbx

2h

�imðs� 2T rÞby

2h
ibx

h
�1� smb2

x

2h2

smbxby

2h2

iby

h

smbxby

2h2
�1�

smb2
y

2h2

2
666666664

3
777777775
: ð4:59Þ
It is pleasing that the eigenvalues of this simplified matrix are particularly simple,
k1;2 ¼ �
1

2T r

sm

h2
b2 þ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2mðs� 2T rÞ

h2
b2

s0
@

1
A; ð4:60Þ

k3 ¼ �
1

T r

: ð4:61Þ



342 H. Nishikawa / Journal of Computational Physics 227 (2007) 315–352
Note that because the characteristic equation is cubic there is always one real root. This is given by k3 for small
bx and by. This eigenvalue represents the inconsistency damping mode. Turning attention to k1,2, we require,
as in one-dimension, these eigenvalues to be complex conjugates which leads to
Lr P
h
4

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

b2

s !
; ð4:62Þ
and, in order to ensure it for all possible discrete error modes (although only approximately this time), we set
b = ph and define
Lr ¼
h
4

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

p2h2

r !
� 1

2p
þ h

4
þOðh2Þ: ð4:63Þ
This agrees with the one-dimensional version (3.57) up to O(h2), and so we could use the same approximation
as in (3.58).

The real part of the eigenvalue is plotted for by = 0 in Fig. 9. They are very similar to the one-dimensional
counterparts. However, this time, there is a real eigenvalue common to all schemes. This corresponds to the
inconsistency damping mode, i.e., the wave that does not propagate. Fortunately, the damping factor is
always less than 1, so that all modes will be damped out. It is also noted that there is a bifurcation point

for the scheme with s ¼ hTffiffiffiffiffiffiffi
m=T r

p near bx = p, beyond which the eigenvalues turn to real. This is because the

Lr in (4.63) guarantees complex eigenvalues only approximately for small b, and so the eigenvalues could
be real for high-frequency modes. In fact, if we look at the polar plot of the eigenvalues of this scheme as given
in Fig. 10, in which the three eigenvalues are distinguished by different symbols, we see that there are indeed
error modes that are purely damped (apart from the common real eigenvalue indicated by stars).

4.5. Truncation error

Expand smooth functions u, p, and q over a regular triangular grid (see Fig. 8), and substitute them into the
semi-discrete Eq. (4.15) with (4.19) to get
dUj

dt
¼ I� s

2
Aox þ Boy

	 
h i
rþOðh2Þ; ð4:64Þ
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–4

–3

–2

–1

0

βx

R
e(

λ)

τ = h/(ν/Tr)1/2

τ = 2Tr 

Exact ν uxx

βx = π h 

Exact First–Order System 

The Common Real Eigenvalue

Fig. 9. Re(k) for by = 0, h = 0.2 and m = 0.05. T r ¼
L2

r

m
with, for a comparison purpose, Lr ¼

h
4

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

p2h2

r !
for all.



–2 –1.8 –1.6 –1.4 –1.2 –1 0.8 0.6 0.4 0.2 0
–0.5

–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

0.5

Im
(λ

)

Re(λ)

Fig. 10. Polar plots of the eigenvalues for the scheme with s ¼ hTffiffiffiffiffiffiffiffiffiffi
m=T r

p and Lr ¼
h
4

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

p2h2

r !
, for ph 6 b 6 p. h = 0.2 and m = 0.05.

H. Nishikawa / Journal of Computational Physics 227 (2007) 315–352 343
where
r ¼ ½mðpx þ qyÞ; ðux � pÞ=T r; ðuy � qÞ=T r�t; ð4:65Þ
or component-wise
duj

dt
¼ mðpx þ qyÞ þ

sm
2T r

ðux � pÞx þ ðuy � qÞy
h i

þOðh2Þ; ð4:66Þ

dpj

dt
¼ ðux � pÞ=T r þ

sm
2T r

ðpx þ qyÞx þOðh2Þ; ð4:67Þ

dqj

dt
¼ ðuy � qÞ=T r þ

sm
2T r

ðpx þ qyÞy þOðh2Þ: ð4:68Þ
Note again as in one-dimension that the scheme has the residual vector r as a factor in the truncation error,
which vanishes at the steady state and second-order accuracy is obtained. The residual-distribution scheme
can be thought of as a generalization of the residual-based compact scheme [39] for unstructured triangular
grids.

Suppose now that the smooth solutions are exact solutions to the discrete equations in the steady state
ðduj=dt ¼ dpj=dt ¼ dqj=dt ¼ 0Þ, the numerical solutions satisfy
0 ¼ mðpx þ qyÞ þ
sm

2T r

ðux � pÞx þ ðuy � qÞy
h i

þOðh2Þ; ð4:69Þ

0 ¼ ðux � pÞ=T r þ
sm

2T r

ðpx þ qyÞx þOðh2Þ; ð4:70Þ

0 ¼ ðuy � qÞ=T r þ
sm

2T r

ðpx þ qyÞy þOðh2Þ: ð4:71Þ
For s = 2Tr, we obtain
0 ¼ mðuxx þ uyyÞ þOðh2Þ; ð4:72Þ
0 ¼ ðux � pÞ=T r þ mðpx þ qyÞx þOðh2Þ; ð4:73Þ
0 ¼ ðuy � qÞ=T r þ mðpx þ qyÞy þOðh2Þ; ð4:74Þ
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and so uj converges to the solution of the diffusion equation. We write the other two equations with T r ¼ L2
r

m
and Lr ¼ h

2k,
0 ¼ 4mk2

h2
ðux � pÞ þ mðpx þ qyÞx þOðh2Þ; ð4:75Þ

0 ¼ 4mk2

h2
ðuy � qÞ þ mðpx þ qyÞy þOðh2Þ: ð4:76Þ
The situation is similar to that in one-dimension. For k = O(1), this shows that the scheme gives second-order
accuracy for pj and qj, and for k = O(h), the scheme is not consistent. However, the situation is different in the
case k! 0. In this case, the solution converges to the solution of
0 ¼ mðpx þ qyÞx þOðh2Þ; ð4:77Þ
0 ¼ mðpx þ qyÞy þOðh2Þ; ð4:78Þ
and thus the scheme is not consistent. Unfortunately, unlike the one-dimensional case, the cell-residuals do not
all necessarily vanish in two dimensions, and so we cannot discuss this any further. We only mention that
numerical experiments show that the scheme is indeed inconsistent.

On the other hand, for s ¼ hTffiffiffiffiffiffiffi
m=T r

p ¼ hLr

m , we obtainh i

0 ¼ mðpx þ qyÞ þ

mh
2Lr

ðux � pÞx þ ðuy � qÞy þOðh2Þ; ð4:79Þ

0 ¼ m

L2
r

ðux � pÞ þ mh
2Lr

ðpx þ qyÞx þOðh2Þ; ð4:80Þ

0 ¼ m

L2
r

ðuy � qÞ þ mh
2Lr

ðpx þ qyÞy þOðh2Þ: ð4:81Þ
For a nonzero finite value of Lr which is the case of (4.63), this shows that the numerical solution converges to
the solution of the first-order system (4.3) as h! 0. By eliminating the first-order terms by using the equations
themselves, we find
0 ¼ mðpx þ qyÞ �
mh2

4
ðpx þ qyÞxx þ ðpx þ qyÞyy

h i
þOðh2Þ; ð4:82Þ

0 ¼ ðux � pÞ � h2

4
ðux � pÞx þ ðuy � qÞy
h i

x
þOðh2Þ; ð4:83Þ

0 ¼ ðuy � qÞ � h2

4
ðux � pÞx þ ðuy � qÞy
h i

y
þOðh2Þ; ð4:84Þ
thus they converge at the rate of O(h2).

4.6. Boundary conditions

In two dimensions, the discrete problem is always overdetermined for triangular grids. Therefore, unlike the
one-dimensional case, there are no ways via boundary conditions to equate the number of unknowns and the
number of cell residuals. A simple treatment would be that we specify just any values that can be specified. For
example, for the Dirichlet conditions, we specify uj and the gradient tangential to the boundary (pj or qj or
their combination). Note that the tangential gradient corresponds to zero eigenvalue and so it is irrelevant
to the characteristic condition. This means that it basically suffices to specify one value on the boundary
because there is only one characteristic coming out of the boundary. The same is true for the Neumann con-
ditions where we specify only the gradient normal to the boundary.

5. Derived scalar schemes

The first-order system approach is useful also in deriving scalar schemes. As mentioned earlier, the scalar
isotropic distribution scheme does not provide sufficient dissipation for high-frequency error modes. This



H. Nishikawa / Journal of Computational Physics 227 (2007) 315–352 345
means that we need to add a dissipation term in the scheme. However, deriving a dissipation term for the dif-
fusion scheme is not a trivial task especially if we wish to keep the scheme compact. For example, if we apply
the Lax–Wendroff time-expansion procedure for the second-order diffusion equation, we immediately face a
problem of discretizing second-derivatives of the residual (i.e., the fourth-derivative of the solution) which is
not trivial on unstructured grids and certainly cannot be done in a compact manner. Now recall that the sys-
tem schemes can be thought of as a scalar scheme with an implicit reconstruction of the gradients. Then, it is
legitimate to replace the implicit reconstruction by an explicit one. If we decide to do this, we are left with the
uj component of the system schemes. In one dimension, this is given by (3.23) which can be written as
h
duj

dt
¼ 1

2
/L � sm

2T r

DuL

h
� �pL

� �� �
þ 1

2
/R þ sm

2T r

DuR

h
� �pR

� �� �
; ð5:1Þ
where /L ¼
R

L
muxx dx ¼ mDpL and /R ¼

R
R

muxx dx ¼ mDpR. In two dimensions, we have from (4.26)
Sj
duj

dt
¼
X

T2fT jg

1

3
/T � sm

4T r

ruT � ð�pT ; qT Þ
� �

� nT
j

� �
; ð5:2Þ
where /T ¼
RR

T mðuxx þ uyyÞdxdy ¼ mðpT
x þ qT

y ÞST . These are now scalar schemes with all (pj, qj) evaluated by
explicitly reconstructed gradients. As can be seen clearly from these formulas, we have just discovered a form
of dissipation: it is constructed over a cell by the difference between the constant gradient of u within the cell
and the average of the reconstructed gradients. These terms sum up to zero over the cell, and therefore the
schemes remain conservative. Note that these dissipation terms originate from the least-squares part of the
distribution matrices, (3.16) and (4.19). This means that we can derive a dissipation term of a scalar scheme
for the second-order diffusion equation by applying the least-squares discretization to its equivalent first-order
system, in much the same way as is done in [26] for advection schemes . Without going through the first-order
system, it would have been almost impossible to derive these dissipation terms.

We now have a family of scalar schemes for the diffusion equation in which the parameter (s/Tr) may be
chosen, for example, to endow the scheme with a property such as positivity [42]. These scalar schemes are,
however, under the O(h2) time step restriction because they are discretizations of second-order derivatives
for which O(h2) geometric factor cannot be avoided. For this reason, we do not consider these schemes further
in this paper.
6. Results

6.1. One-dimensional problem

We consider the following problem:
ut ¼ muxx þ mp2 sinðpxÞ in X ¼ ½0; 1�; ð6:1Þ

where m = 1 and u(0) = u(1) = 0. We compute the steady state solution to this problem, by solving the equiv-
alent first-order system
ut ¼ mpx þ mp2 sinðpxÞ;
pt ¼ ðux � pÞ=T r:

ð6:2Þ
The source term in the first equation is evaluated by the trapezoidal rule over the cell and included in the cell-
residual, in exactly the same way that p in the second equation is treated. We start from the initial solutions,
u = x(x � 1) and p = 2x � 1, integrate in time with a time step defined by (3.28) until convergence, and com-
pare the solutions with the exact steady state solutions: u = sin(px) and p = pcos(px). We tested new schemes
for grids with numbers of cells N = 8, 16, 32, 64, 128, 256. The CFL number is taken to be 0.99 for all cases. A
scheme is taken to be converged when the nodal residuals are reduced nine orders of magnitude in the L1

norm, in order to ensure that the solutions are fully converged. We remark that the steady state solution is
independent of m, and the schemes are designed also to be independent of m, and therefore all results shown
here are valid for any m. In all results, we show L1 errors only for brevity. L2 and L1 errors behave similarly.
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Shown in Tables 1–3 are results for the choice s = 2Tr for three different choices of Lr. Table 1 shows results
for the scheme with the optimal damping for high-frequency modes. As expected, we see that the number of
iterations (indicated by the abbreviation ITR) grows quadratically with the mesh size, and also that the sec-
ond-order accuracy is obtained for both variables. Table 2 shows results for the scheme with a larger Lr which
corresponds to increasing the relaxation parameter x toward 1 in the point Jacobi iteration for uj. It converges
faster than the previous scheme, but we still have the quadratic increase in the number of iterations. Tables 3
shows results for the scheme with an even greater Lr, corresponding to x! 1. We now observe that the accu-
racy for the gradient variable deteriorates to first-order. This confirms the analysis in Section 3.5.

Next, in Tables 4–6, we show results for the choice s ¼ hffiffiffiffiffiffiffi
m=T r

p for three different choices of Lr. These schemes

allow O(h) time step, and we expect that the number of iterations grows linearly. Table 4 shows results for the
optimal Lr in convergence toward the steady state. As can be clearly seen, the scheme converges surprisingly
fast, and the number of iterations does grow linearly. Even for the finest grid, it takes only 2279 iterations
while the schemes s = 2Tr take about 280,000 iterations (more than 100 times as many) for the same grid.
It should be noted that each iteration costs roughly the same for all schemes. Therefore, the gain in the number
of iterations is directly translated into CPU time. In the finest grid case, we compared CPU times for two
schemes, i.e., the scheme of Table 4 and the scheme of Table 2. The result is that the former took only 3 sec-
onds while the latter took 357 seconds (nearly 6 minutes). The gain is substantial, and will be more and more
Table 1
s = 2Tr and Lr ¼

hffiffiffi
2
p

N ITR L1 error of u Order L1 error of p Order

8 401 2.40E � 04 1.29E � 03
16 1601 5.67E � 05 2.08 3.24E � 04 2.00
32 6394 1.38E � 05 2.04 8.12E � 05 2.00
64 25,546 3.39E � 06 2.02 2.03E � 05 2.00

128 102,112 8.40E � 07 2.01 5.08E � 06 2.00
256 408,372 2.09E � 07 2.01 1.27E � 06 2.00

Table 2
s = 2Tr and Lr ¼

h
0:4

N ITR L1 error of u Order L1 error of p Order

8 279 2.40E � 04 1.29E � 03
16 1109 5.67E � 05 2.08 3.24E � 04 2.00
32 4432 1.38E � 05 2.04 8.12E � 05 2.00
64 17,710 3.39E � 06 2.02 2.03E � 05 2.00

128 70,796 8.04E � 07 2.01 5.08E � 06 2.00
256 283,133 2.09E � 07 2.01 1.27E � 06 2.00

Table 3
s = 2Tr and Lr ¼

h
0:00001

N ITR L1 error of u Order L1 error of p Order

8 333 2.40E � 04 1.03E � 02
16 1197 5.67E � 05 2.08 5.13E � 03 1.00
32 4521 1.38E � 05 2.04 2.56E � 03 1.00
64 17,549 3.39E � 06 2.02 1.28E � 03 1.00

128 69,178 8.04E � 07 2.01 6.41E � 04 1.00
256 275,671 2.09E � 07 2.01 3.20E � 04 1.00
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substantial as the grid gets finer. Table 5 shows results with the approximate Lr in (3.58). It generally takes
more iterations but just a few, showing that it is a good and useful approximation. For the N = 64 grid, how-
ever, the scheme converges faster than the one with the optimal Lr. Remember that the optimal Lr was derived
based on the damping property only, and the error propagation was not taken into account. In particular, the
most persistent mode (b = ph) was designed to be purely damped with the optimal Lr. A detailed analysis
shows that the most persistent error mode begins to propagate rather than purely damped for the approximate
Lr. This could improve the convergence but only marginally, and as we increase Lr from the optimal one the
convergence property soon deteriorates because the damping factor grows rapidly. Table 6 shows results with
Lr = 1. This symmetrizes the first-order diffusion system. Although it takes longer to converge than the pre-
vious schemes, the time step is still O(h) and the number of iterations grows linearly. For example, for the fin-
est grid, the number of iterations is only about 1

20
of those of the schemes s = 2Tr. Obviously, as far as the

iteration toward the steady state is concerned, these schemes offer a great advantage over the conventional
schemes with O(h2) time step.

Finally, we remark that all schemes converge to the same solution (except for the gradient variable in Table
3). This is because the one-dimensional discrete problem has a unique solution as mentioned in 3.2. Therefore,
as long as the scheme is consistent, it converges to the same solution.
Table 4

s ¼ hffiffiffiffiffiffiffiffiffiffi
m=T r

p and Lr ¼
h
4

1þ 1

sin ph
2

� �

N ITR L1 error of u Order L1 error of p Order

8 89 2.40E � 04 1.29E � 03
16 150 5.67E � 05 2.08 3.24E � 04 2.00
32 268 1.38E � 05 2.04 8.12E � 05 2.00
64 561 3.39E � 06 2.02 2.03E � 05 2.00

128 1022 8.04E � 07 2.01 5.08E � 06 2.00
256 2279 2.09E � 07 2.01 1.27E � 06 2.00

Table 5

s ¼ hffiffiffiffiffiffiffiffiffiffi
m=T r

p and Lr ¼
1

6
þ h

4

N ITR L1 error of u Order L1 error of p Order

8 94 2.40E � 04 1.29E � 03
16 157 5.67E � 05 2.08 3.24E � 04 2.00
32 270 1.38E � 05 2.04 8.12E � 05 2.00
64 556 3.39E � 06 2.02 2.03E � 05 2.00

128 1126 8.04E � 07 2.01 5.08E � 06 2.00
256 2293 2.09E � 07 2.01 1.27E � 06 2.00

Table 6

s ¼ hffiffiffiffiffiffiffiffiffiffi
m=T r

p and Lr = 1

N ITR L1 error of u Order L1 error of p Order

8 331 2.40E � 04 1.29E � 03
16 702 5.67E � 05 2.08 3.24E � 04 2.00
32 1383 1.38E � 05 2.04 8.12E � 05 2.00
64 2973 3.39E � 06 2.02 2.03E � 05 2.00

128 6152 8.04E � 07 2.01 5.08E � 06 2.00
256 12,753 2.09E � 07 2.01 1.27E � 06 2.00
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6.2. Two-dimensional problem

We consider the following problem:
Table
s = 2T

Grids

10 · 1
20 · 2
40 · 4
80 · 8

160 · 1
ut ¼ mðuxx þ uyyÞ in X ¼ ½0; 1� 	 ½0; 1�; ð6:3Þ

where m = 1 and the boundary conditions u(x = 0) = 0, u(x = 1) = sin (py), u(y = 0) = 0, u(y = 1) = sin(px).
We compute the steady state solution to this problem by solving the equivalent first-order system
ut ¼ mðpx þ qyÞ;
pt ¼ ðux � pÞ=T r;

qt ¼ ðuy � qÞ=T r:

ð6:4Þ
The exact steady solution is given by
uðx; yÞ ¼ sinhðpxÞ sinðpyÞ þ sinhðpyÞ sinðpxÞ
sinhðpÞ : ð6:5Þ
We start from the initial solutions, u = p = q = 1 inside the domain. On the boundary, we specify u every-
where, p on the top and bottom boundary, and q on the left and right boundary as they can be evaluated from
u given there. We employ the forward Euler time stepping to integrate in time until convergence with the CFL
number 0.9, and compare the solutions with the exact steady state solution. The method is taken to be con-
verged when the nodal residuals are reduced nine orders of magnitude in the L1 norm. This ensures that all
numerical solutions are fully converged. New schemes were tested for a series of regular triangular grids:
10 · 10, 20 · 20, 40 · 40, 80 · 80, 160 · 160. We remark again as in the one-dimensional cases that the steady
state solution as well as the schemes are independent of m, and therefore all results shown here are valid for any
m.

Table 7 shows results for the scheme with s = 2 Tr (the Galerkin scheme for uj) and the optimal Lr for high
frequency damping. Exactly as expected, we observe a quadratic increase in the number of iterations and sec-
ond-order accuracy for both variables. Remember that this is the Galerkin scheme for uj, but we have now the
solution gradients of the equal order of accuracy. Table 8 shows results for the scheme with s ¼ hffiffiffiffiffiffiffi

m=T r

p with the

optimal choice for Lr for the fastest convergence. As can be seen, the number of iterations indeed increases
linearly as we expect, and it converges tremendously faster than the previous one for all grids. For example,
in the finest grid case, this scheme is about 40 times faster than the previous one. Table 9 shows results for the
same scheme with an approximate expression for the optimal Lr which is the same as the one-dimensional ver-
sion. It only shows a slight increase in the number of iterations. This demonstrates the effectiveness of the
approximation. Table 10 shows results for Lr = 1, i.e., the symmetric first-order diffusion system. As expected,
it takes more iterations to reach the steady state. Nevertheless, the time step remains O(h), and the number of
iterations grows linearly with the mesh size. For the finest grid, this scheme converges nearly 8 times faster
than the Galerkin scheme. Furthermore, this factor grows linearly as the grid gets finer because the factor
in the time steps are O(h). Hence, this scheme still offers a great advantage for the iterative convergence toward
the steady state over the conventional schemes with O(h2) time step.
7

r and Lr ¼
hTffiffiffi

3
p

ITR L1 error of u Order L1 error of p Order L1 error of q Order

0 660 2.67E � 03 2.60E � 02 2.60E � 02
0 2534 6.09E � 03 2.13 6.48E � 03 2.00 6.49E � 03 2.00
0 9784 1.46E � 04 2.06 1.60E � 03 2.02 1.60E � 03 2.03
0 37,601 3.56E � 05 2.04 3.97E � 04 2.01 3.97E � 04 2.01
60 144,542 8.82E � 06 2.01 9.94E � 05 2.00 9.94E � 05 2.00



Table 10

s ¼ hTffiffiffiffiffiffiffiffiffiffi
m=T r

p and Lr = 1

Grids ITR L1 error of u Order L1 error of p Order L1 error of q Order

10 · 10 1489 2.62E � 03 1.37E � 02 1.37E � 02
20 · 20 3158 5.67E � 04 2.21 2.92E � 03 2.23 2.84E � 03 2.27
40 · 40 5913 1.33E � 04 2.10 6.99E � 04 2.06 6.99E � 03 2.02
80 · 80 10,480 3.24E � 05 2.04 1.74E � 04 2.01 1.74E � 04 2.01

160 · 160 18,169 7.97E � 06 2.02 4.34E � 05 2.00 4.34E � 05 2.00

Table 9

s ¼ hTffiffiffiffiffiffiffiffiffiffi
m=T r

p and Lr ¼
1

6
þ hT

4

Grids ITR L1 error of u Order L1 error of p Order L1 error of q Order

10 · 10 294 1.41E � 03 1.49E � 02 1.49E � 02
20 · 20 610 4.10E � 04 1.78 3.21E � 03 2.22 3.18E � 03 2.23
40 · 40 1006 1.15E � 04 1.84 7.45E � 04 2.11 7.49E � 04 2.09
80 · 80 2196 3.01E � 05 1.93 1.81E � 04 2.04 1.81E � 04 2.05

160 · 160 3703 7.68E � 06 1.97 4.45E � 05 2.02 4.45E � 05 2.02

Table 8

s ¼ hTffiffiffiffiffiffiffiffiffiffi
m=T r

p and Lr ¼
h
4

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

p2h2
T

s !

Grids ITR L1 error of u Order L1 error of p Order L1 error of q Order

10 · 10 283 1.39E � 03 1.50E � 02 1.50E � 02
20 · 20 590 4.06E � 04 1.78 3.22E � 03 2.22 3.20E � 03 2.23
40 · 40 969 1.14E � 04 1.83 7.48E � 04 2.11 7.52E � 04 2.09
80 · 80 2116 3.00E � 05 1.93 1.81E � 04 2.05 1.81E � 04 2.05

160 · 160 3545 7.67E � 06 1.97 4.45E � 05 2.03 4.45E � 05 2.03
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Note that the numerical solution is not unique in two dimensions. We observe from these results that the
errors are generally larger for the Galerkin scheme (s = 2Tr).

Finally, we mention that there are other iterative methods which show a similar linear convergence prop-
erty, such as the alternating-direction implicit methods or the preconditioned conjugate gradient methods (see
[43]). But these are inherently implicit methods and require a considerable amount of work such as inverting a
large matrix at every iteration. This makes them incomparably more expensive than our schemes which are
purely explicit and do not require any matrix inversion. Also, the conventional Gauss-Seidel iteration scheme
could perform similarly with optimum over-relaxation [44]. But this is not general: it is true only with an opti-
mal relaxation factor. On the other hand, there are no subtle tuning parameters in our schemes: any Lr = O(1)
will allow O(h) time step. Remember also that our schemes come with solution gradients computed simulta-
neously with comparable accuracy to the main variable.

7. Concluding remarks

This paper has introduced a new strategy for computing the steady state solution of the diffusion equation,
based on the first-order system that is equivalent to the diffusion equation in the steady state. We developed a
class of residual-distribution schemes for the first-order system. Compared with the standard Galerkin scheme,
the proposed scheme has remarkable features. First, the new scheme gives second-order accuracy for both the
solution and the gradient variables. For practical problems, such as the Navier–Stokes equations, this means
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that the scheme directly computes the viscous stresses and the heat fluxes in addition to the velocity compo-
nents with the same order of accuracy. Second, the schemes with s ¼ hffiffiffiffiffiffiffi

m=T r

p and Lr = O(1) allow O(h) time step

which is significantly larger than the time step of O(h2) for the conventional schemes. This is a great advantage
for steady state computations, motivating the use of explicit time integration schemes for diffusion problems.
For time accurate computations, we can employ the dual time stepping technique [45,46] in which the pro-
posed scheme can be used as a fast iterative method in the inner iteration (see also [47,48] which are specific
to residual-distribution schemes).

In this paper, we studied two types of schemes with s = 2Tr and s ¼ hffiffiffiffiffiffiffi
m=T r

p . The former corresponds to the

Galerkin discretization for the main variable, and can be designed so as to have a smoothing property in
exactly the same way as the standard scalar scheme. Note that it is identical to the standard Galerkin scheme
for the main variable but it comes with equally accurate solution gradients. For the purpose of marching in
time toward the steady state, however, this scheme is not well suited for because increasing the relaxation fac-
tor x in the context of the point Jacobi iteration causes accuracy deterioration for the gradient variables. In
this case, the other scheme, s ¼ hffiffiffiffiffiffiffi

m=T r

p , is better suited because this scheme is stable with O(h) time step and

converges rapidly to the steady state. We have shown therefore that the first-order system approach works
for deriving an effective smoother for multigrid as well as for developing a fast explicit scheme for steady state
computations.

We have shown also that the Galerkin scheme, which by itself is not a residual-distribution scheme by def-
inition, arises as a special case of the proposed scheme. It is not residual-distribution by itself, but combined
with gradient computations, it is a residual-distribution scheme with cell-residuals defined for the equivalent
first-order system. This paper revealed a connection between two methods which had been apparently com-
pletely different methods, and justifies the use of the Galerkin discretization in the framework of the resid-
ual-distribution method.

Although we focused on residual-distribution schemes in this paper, the first-order system approach can
apply equally to finite-difference or finite-volume methods. For each scheme employed, an optimal value of
Lr may be derived based on a smoothing property or the fastest convergence to a steady state. Or we may
simply take Lr = 1 to keep the system symmetric. In this case, obviously Lr = O(1), and therefore the resulting
scheme will allow O(h) time step. It must be kept in mind however that accuracy is obtained only in the steady
state. A rapid convergence with O(h) time step is achieved at the cost of giving up the time accuracy.

This paper has just established a basis for a further development. Yet another remarkable improvement
comes in advection-diffusion problems. The first-order system has now an advection term and remains a
hyperbolic system, and so we may simply apply an upwind scheme for the entire system. Apparently, there
is no need any more to ‘add’ two schemes, an advection scheme and a diffusion scheme, to construct an advec-
tion-diffusion scheme. This will be the subject of the subsequent paper.
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